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Abstract. We revisit Poincaré and Hilbert’s conception of the axioms of geometry
as definitions in disguise, and we argue that any axiomatic system is the definition
of some concepts. We focus in particular on the axioms of set theory.

1. Introduction

Before the development of non-Euclidean geometries in the XIX century, the axioms
of Euclid’s Elements were regarded as absolute principles formalising the basic laws
of space. The introduction of hyperbolic and elliptic geometries challenged the domi-
nant view on the a prioricity of geometry; if the principles of geometry were a priori,
their violation would lead to a contradiction, instead different geometries are possible.
Despite the deep differences in their philosophical views, Poincaré and Hilbert came
to the same conception of the axioms of geometry: they are definitions in disguise;
rather than asserting undeniable truths, they fix the meaning of the basic terms of
geometry (point, line etc.) that would otherwise remain undefined. The main purpose
of this paper is to extend Poincaré and Hilbert’s account of geometry to any axiomatic
system.

Nowadays, mathematicians no longer consider geometry as a body of indisputable
principles. Pluralism in geometry is safely accepted, in fact contemporary geome-
ters study different geometries and this has valuable applications to physics or even
cryptography and coding theory. On the other hand, it is generally believed that
the axioms of theories such as set theory or arithmetic have a different status, that
they should have a non-conventional, possibly intrinsic, justification. In the words of
Feferman:

When the working mathematician speaks of axioms, he or she usually
means those for some particular part of mathematics such as groups,
rings, vector spaces, topological spaces, Hilbert spaces, and so on.
These kinds of axioms have nothing to do with self-evident proposi-
tions, nor are they arbitrary starting points. They are simply defi-
nitions of kinds of structures which have been recognized to recur in
various mathematical situations. I take it that the value of these kinds
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of structural axioms for the organization of mathematical work is now
indisputable. In contrast to the working mathematician’s structural
axioms, when the logician speaks of axioms, he or she means, first
of all, laws of valid reasoning that are supposed to apply to all parts
of mathematics, and, secondly, axioms for such fundamental concepts
as number, set and function that underlie all mathematical concepts;
these are properly called foundational axioms.1

We will question Feferman distinction between structural and foundational axioms
by presenting a new approach to axioms, inspired by Poincaré and Hilbert’s account
of geometry, that considers any axiomatic system as the definition of some concepts.
We will focus in particular on set theory and argue that this can be regarded as an
axiomatic definition of the concept of ‘set’.

The paper is structured as follows. In Section 2 we briefly explain the motivations
for the present work. In Sections 3 and 4, we discuss Poincaré and Hilbert’s conception
of geometry, and we outline our broader conceptual approach to all axiomatic systems.
In Section 5 we propose a non-literal interpretation of the axioms of ZFC that justifies
our view of set theory as a definition. Moreover, in this section we suggest that the
very nature of the concept of ‘set’ should not be sought in the idea of a collection
of objects regarded as a totality in its own right, but rather in the possibility of
performing specific operations on such collections. Finally, in Section 6 we argue that
our view point on set theory ties up with set theoretic pluralism.

2. Motivations for this work

Whilst axiomatic set theory was originally meant to provide a foundation for all
mathematics, the development of forcing led to the discovery that many important
mathematical problems cannot be solved within the classical theory of sets ZF. Several
additional axioms have been introduced over the years that partially answer some of
the questions that are independent from ZF: large cardinals axioms, forcing axioms,
determinacy hypotheses etc. This variety of strong principles, often incompatible
with each other, led to debate what should be suitable criteria for new axioms for
set theory. Several suggestions have been made which appeal to intrinsic or extrinsic
criterias of various kind (see for instance Maddy [10]), but the discussion largely de-
pend on some preliminary questions: what foundational role shall we expect from set
theory? Is there one absolute set theory? This paper is meant as a contribution to
this discussion. We will argue that pluralism in set theory is the natural consequence
of our approach to axioms as definitions: each theory of set is equally legitimate as a
definition of the concept of ‘set’ (see Section 6).

1Feferman [2].
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Whether or not an axiom system is a definition in disguise is not just a linguis-
tic matter, but changes the perspective on the role of axioms in mathematics and
the goal of set theory. By arguing that any axiomatic system is the definition of
some concepts, we intend to oppose to the very idea that the axioms of a theory ex-
press absolute mathematical truths. Thus, our view challenges the foundational role
traditionally ascribed to set theory: we cannot expect for set theory to legitimate
mathematical knowledge, although it can still aim at a fundamental role, namely pro-
viding a conceptual basis for mathematics by determining a concept of ‘set’ as general
as possible to embrace all suitable mathematical notions. More details about our view
of the role of set theory for mathematics will be given in Section 6.

We shall first clarify something that may easily lead to a misunderstanding. Ev-
ery definition contains a sign or expression which had no meaning before and whose
meaning is given by the definition. In mathematics it is quite common to introduce
axiomatic definitions of symbols that are not included in the language of the theory
considered. More precisely, suppose we have a theory T written in a language L
and we want to define a new symbol R (a singular term, a predicate or a function)
that is not in the language L , we can give a definition of R through sentences in the
expanded language L + {R}. These are called implicit definitions. Beth definability
theorem establishes that, in first order logic, every implicit definition is equivalent to
an explicit definition, namely one that depends on a formula of the original language
L of the theory. Nevertheless, axiomatic definitions of this kind (implicit or explicit)
require a background theory. In what sense then, can axiomatic systems that do not
have a background theory, such as set theory, be regarded as definitions? We shall
answer that in that case, the axioms fix the very meaning of the non-logical symbols
of the language of the theory (i.e. the signature of the theory), such as ∈ and = in
the case of set theory. These symbols are defined simultaneously through the axioms
which establish their mutual relations with each other. Thus, as we will see, the
axioms provide a system of relations between the terms so defined. To simplify the
terminology, we will just say that the axioms of set theory define the concept of ‘set’,
or the axioms of arithmetic define the concept of ‘number’, where what we actually
mean is that set theory defines the symbols ∈ and =, arithmetic defines 0, S, + and
×, and so on.

3. Poincaré’s account of geometry

Let us briefly discuss the evolution of geometry that led to the introduction of non-
Euclidean geometries. Euclid’s Elements is the first axiomatic presentation of a branch
of mathematics; in this work, geometry is developed through five ‘axioms’ and five
‘postulates’. It is quite difficult to clarify the precise distinction between these two no-
tions. For Aristotle an ‘axiom’ is a self-evident proposition stating some general truth
that is common to all sciences, while a ‘postulate’ concerns only a specific science. It
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is not clear what meaning Euclid accorded to these two notions and whether or not
he shared Aristotle’s distinction; in any case, we can grant that in the philosophical
tradition of the ancient Greeks both ‘axioms’ and ‘postulates’ shared the character of
being undeniable statements. Nevertheless, one of Euclid’s postulates, the fifth, was
quite controversial.

The fifth postulate, also called ‘parallel postulate’, can be stated as follows: Given
a straight line and a point outside the line, there is one and only one straight line
passing through the point which is parallel to the given one. Unlike the other princi-
ples of Euclid’s axiomatisation, the legitimacy of the parallel axioms as a postulate
was repeatedly questioned. While it was generally believed to be true, the common
opinion seems to have been that it ought to be proved. There is evidence that Euclid
himself tried to derive it from the other axioms and postulated before including it in
his axiomatisation. Over the centuries, several attempts to find a demonstration of
the parallel postulate (from the other axioms) were made, unsuccessfully. Then, in the
XIX century, Lobachevskii, Bolyai, Gauss and Riemann considered various negations
of the fifth postulate: the parallel postulate was replaced by the statements asserting
the existence of more than one straight line (hyperbolic geometry) or no straight line
(elliptic geometry) passing through the point and parallel to the given one. The re-
sulting geometries were later proven to be consistent by Beltrami in 1868 (assuming
the consistency of Euclid’s geometry). For instance, the consistency of elliptic geom-
etry can be proven by considering a sphere as a model, where the plane is identified
with the surface of the sphere, the straight lines are the great circles, and points at
each other’s antipodes are taken to be equal.

Poincaré’s analysis of these results is quite unassailable (see [12]): the axioms of
Euclid’s geometry do not establish experimental facts, because we do not have ex-
perience of ideal straight lines and points, nor they express a priori knowledge for
otherwise it would not be possible to violate the fifth postulate without contradiction.
What is, then, the nature of these axioms? Poincaré’s answer is ‘they are definitions
in disguise’.

The axioms of geometry are therefore neither synthetic a priori intu-
itions nor experimental facts. They are conventions. Our choice among
all possible conventions is guided by experimental facts; but it remains
free and is only limited by the necessity of avoiding every contradiction
[...] In other words, the axioms of geometry (I do not speak of those of
arithmetic) are only definitions in disguise.2

Viewed as definitions the axioms are neither true, nor false.

2Poincaré [12].
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What, then, are we to think of the question: Is Euclidean geometry
true? It has no meaning. One geometry cannot be more true than
another; it can only be more convenient [...] because it sufficiently
agrees with the properties of natural solids, those bodies which we can
compare and measure by means of our senses.3

Pluralism in geometry is the natural consequence of this approach which grants
absolute freedom for the formulation of new axiomatisations, provided they do not
lead to a contradiction. No geometrical system is absolute, although one can be more
appropriate than others for modelling certain aspects of the physical universe. For
instance, Euclidean geometry conforms to our daily experience of the distance, length,
dimension of the objects around us, while elliptic geometry gives a better account for
larger portions of the Earth: if we consider any three items in our apartment and
measure the sum of the internal angles of the triangle formed by these items, the
result of our measurement would be 180◦ (approximatively) in accordance with the
laws of Euclidean geometry, on the contrary if we take one item in Paris, the second
in Sidney and the third in Buenos Aires the resulting value would be larger than 180◦

as elliptic geometry predicts.

In this view, geometry is not concerned with the properties of the objects to which
the geometrical system is applied, but rather with the set of relations that hold be-
tween the primitive terms. We shall then stress another important aspect of Poincaré’s
conception of geometry: the meaning of the basic terms can only be fixed through
their relations with each other, thus if we take a primitive term out of the axiomatic
system it would lose all meaning.

If one wants to isolate a term and exclude its relations with other terms,
nothing will remain. This term will not only become indefinable, it will
become devoid of meaning.4

As we will see in Section 4, analogous considerations can be found in Hilbert’s writ-
ings: geometry defines a system of relations between the primitive terms which are
meaningless outside the axiomatic system.

Poincaré’s analysis of the other branches of mathematics is surely different. In his
view, arithmetic is actually synthetic a priori and its certainty is guaranteed by the
intuition. Mathematical induction, he says, is a synthetic a priori principle which
is “imposed upon us with such a force that we could not conceive of the contrary
proposition”.5 Nevertheless, we shall object that it is actually possible to consider
an arithmetic where the induction principle fails. For instance, Robinson Arithmetic

3Poincaré [12].
4Poincaré [11]
5Poincaré [12]
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Q is a version of arithmetic without the induction6, and one can easily exhibit a
model of Q where the induction fails.7 In principle, then, we can extend the same ap-
proach for geometry to arithmetic and regard its axioms not as absolute indisputable
truths but as mere definitions of certain terms, namely ‘zero’, ‘successor’, ‘sum’ and
‘product’. The very meaning of these terms changes with the axiomatisations, thus
‘successor’ means something different in Peano Arithmetic and Robinson Arithmetics.

Concerning set theory, Poincaré was one of the most famous opponents of modern
set theory for its use of impredicative concepts. We will discuss his criticisms in more
detail in Section 5 and we will appeal precisely on impredicative concepts to endorse
our view that the axioms of set theory should be regarded as definitions.

4. The Frege-Hilbert controversy

Hilbert’s first reference to axioms as definitions appears in his Grundlagen Der Ge-
ometry [8] where he says that his axiomatization of geometry should be intended as
the definition of the concepts of ‘point’, ‘line’ and ‘plane’. Puzzled by this statement,
Frege asks for an explanation (see [5]); the exchange that followed enlighten us about
the two logicians’ general views on the role of axioms in mathematics.

Frege objects that axioms should be assertions, while definitions do not assert any-
thing, but lay down something. Hilbert replies:

In my opinion, a concept can be fixed logically only by its relations
to other concepts. These relations formulated in certain statements, I
call axioms, thus arriving at the view that axioms (perhaps together
with propositions assigning names to concepts) are the definitions of
the concepts.8

Furthermore, the meaning of the terms so defined is tangled with the axioms cho-
sen, a different axiomatisation would change the meaning of the terms.

[...] to give a definition of a point in three lines is to my mind an
impossibility, for only the whole structure of axioms yields a compete

6See Robinson [13]
7It is enough to consider the natural numbers plus two additional elements a and b, then we

interpret s and + as the natural successor function and addition operation on the natural numbers,
but we impose s(a) = a, s(b) = b, and for every natural number n, a + n = a, b + n = n, for every
element in the domain x, x + a = b and x + b = a. This model can be easily shown to satisfy the
axioms of Q, and the induction fails as 0 + a = a while induction would imply for every x, 0 +x = x.

8Hilbert [5].
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definition and hence every new axiom changes the concept.9

We shall rephrase this thought. Imagine we were asked to provide a precise defini-
tion for every geometrical notion. Then, for instance, we would define the notion of
‘triangle’ as a ‘polygon’ with three ‘edges’ and three ‘vertexes’. The notion of ‘poly-
gon’ is defined from the notion of ‘plane’, the notion of ‘edge’ can be defined from the
notion of ‘line’, and ‘vertex’ is defined from ‘point’. At this point we are supposed to
define ‘plane’, ‘line’ and ‘point’, but if we find a concept χ (or more concepts) that
defines these notions, we will have to find a definition for χ and so on. Thus, as Hilbert
says, we can define a concept only if we put it in relation to other concepts. We can
stop this process, if we define the notions of ‘point’, ‘line’ and ‘plane’ axiomatically,
namely by describing their relations to one another through certain axioms. Analo-
gous considerations can be made for the axioms of set theory. We can define every
mathematical notion, including the notion of ‘function’ and ‘number’ from the notions
of ‘set’ and ‘membership’ which can then be ‘defined’ trough a series of axioms, as we
will argue in Section 5.

Frege’s conception of axioms represents the dominant view at the time of this cor-
respondence with Hilbert:

I call axioms propositions that are true but are not proven because our
knowledge of them falls from a source very different from the logical
source, a source which might be called spatial intuition. From the truth
of the axioms it follows that they do not contradict one another. There
is therefore no need for a further proof.10

This evokes the delicate problem of mathematical truth. As we have seen, after
claiming that geometry is a definition, Poincaré concludes that, as such, geometry is
just a convention and its axioms are therefore neither true nor false. Hilbert, instead,
does not intend to give up the idea that geometry is a body of truths. So in his reply
to Frege, he does not deny the truth of axioms, but explains that their correctness
had to be demonstrated by showing that they do not contradict each other.

I have been saying the exact reverse: if the arbitrarily given axioms do
not contradict one another with all their consequences, then they are
true and the things defined by the axioms exist. This is for me the
criterion of truth and existence.11

9Hilbert 29 Dec. 1899, as translated in [5].
10Frege [5].
11Hilbert [5].
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We should point out (as C. Franks brilliantly observes in [4]) that, despite this
insistence on the necessity to prove the consistency of the axioms – not just for geom-
etry but in general –, Hilbert was not skeptical about the correctness of mathematics,
he simply had higher standard for what counts as a proof of it. While he was con-
vinced that mathematical experience speaks for the consistency of axioms, his goal
was to show that mathematics could stand on its own and prove its own consistency
without appealing to extra-mathematical justifications. Now, while the consistency of
geometry can be reduced to the consistency of analysis, it became clear very quickly
to Hilbert himself that the direct consistency of analysis (i.e. not relative to another
theory) would face significant difficulties. Hilbert hoped to ultimately reduce all math-
ematics to a unique axiomatic system and then prove its direct consistency. Today we
know from Gödel’s incompleteness results that Hilbert’s program cannot be accom-
plished.

For our part, by claiming that any axiomatic system is a definition, we oppose to
the very idea that axioms express absolute truths. While any axiom takes the form of
a sentence, it does not assert anything, it is meaningful only insofar as it contributes
with the other axioms of the system to the definition of a concept. Thus, no axiom
system expresses profound absolute mathematical truths, it only defines certain con-
cepts which may be more or less suitable for modelling different things. Whatever is
the source of mathematical knowledge, or whether mathematics is simply not a body
of truths, is not the object of the present paper.

Hilbert further illustrates his view of the nature of the definition provided by the
axioms in yet another passage of this correspondence. Frege objects that the basic
concepts that are claimed to be defined by his axioms (‘point’, ‘line’, etc.) are not
unequivocally fixed. For instance, a ‘point’ could be a pair of numbers, a triple, a
tuple etc. Hilbert replies:

You say that my concepts, e.g. ‘point’, ‘between’ are not unequivocally
fixed; e.g. ‘between’ is understood differently on p.20, and a point is
there a pair of numbers. But it is surely obvious that every theory is
only a scaffolding or schema of concepts together with their necessary
relations to one another, and that the basic elements can be thought in
any way one likes. If in speaking of my points I think of some system of
things, e.g. the system: love, law, chimney-sweep... and then assume
all my axioms as relations between these things, then my propositions,
e.g. Pythagoras’ theorem, are also valid for these things. [...] At the
same time, the further a theory has been developed and the more finely
articulated its structure, the more obvious the kind of application it has
in the world of appearances and it takes a very large amount of ill will
to want to apply the more subtle propositions of plane geometry or of
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Maxwell’s theory of electricity to other appearances than the ones for
which they were meant...12

Thus the axioms do not point out concrete systems of things, altogether they define
a schema of concepts. To explain this view, we may consider, as an analogy, the dis-
tinction between an individual and its shape: distinct individuals can have the same
shape, the axioms define the ‘shape’ so to speak, not the individuals.

Both Poincaré and Hilbert refers to the axioms of geometry as fixing the relations
between the primitive terms. In this attention for the structural aspects of the ax-
ioms, we can perhaps see in the two logicians a hint of modern Structuralism. In fact,
Shapiro [14] refers to Hilbert’s kind of axiomatic definitions as ‘structural definitions’.
Nevertheless, one of the main concerns of Ante Rem structuralism is categoricity,
which does not seem any of Hilbert’s worries as far as geometry is concerned13: in
fact, in the above passage, Hilbert seems to suggest that no system of things is the
unique possible interpretation of the axioms. Thus, in this view the axioms of geom-
etry would most certainly not define an Ante Rem structure.

In the case of set theory, Shapiro’s structuralist approach to axioms as definitions
would be especially problematic, because neither ZFC, nor second-order ZFC are cat-
egorical14 as Ante Rem Structuralism requires. More importantly, Shapiro replaces
the requirement of consistency of a theory with the one of ‘satisfiability’, namely
the existence of a model15, but as Shapiro himself points out, satisfiability requires a
background set theory where such a model can be found, hence it cannot work as a
reasonable criterion for set theory itself.

In our view, the axioms of a theory do not entail any ontological commitment to
the schema of concepts so defined, the axioms only fix the conditions for a certain
system of things to match the schema. We shall discuss this more precisely in the
next section.

12Hilbert [5].
13On the other hand, categoricity was for Hilbert an important issue in connection with the reals.
14Shapiro, however, remarks that second-order ZFC is quasi-categorical, namely if M and M ′ are

two standard models of second order ZFC, then either M is isomorphic to M ′ or else one of them is
isomorphic to an initial segment of the other. Quasi-categoricity is enough to fix certain references,
e.g. the empty set, ω, etc. are unique up to isomorphism.

15This is motivated by the observation that in second-order logic a theory can be consistent and yet
not have a model. In fact, there is no completeness theorem, so if T is the conjunction of the second
order axioms of Peano arithmetic and G is a standard Gödel sentence that states the consistency of
T, then by the incompleteness theorem P ∧ ¬G is consistent, but it has no models because every
model of P is isomorphic to the natural numbers, hence G is true in all such models. Therefore,
despite its consistency, P ∧ ¬G fails at describing a possible structure.
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5. On the meaning of existential quantifiers

We mentioned Poincaré’s skepticism about set theory due to the use of impredica-
tive concepts. An example is given by the Powerset axiom which is formally stated as
∀x∃y∀z(z ∈ y ⇐⇒ z ⊆ x). This sentence, if interpreted as ‘given a set x, the set of
all subsets of x exists’, involves a circularity, because for this statement to make sense,
one needs to assume the very possibility of a totality of all subsets of x, precisely the
Powerset of x. For this reason, if we think of this axiom as legitimating the totality of
all subsets of x, we run into a circle. On the other hand, if one thinks that statement
as a way of ‘singling out’ something which is already available as a legitimate mathe-
matical notion, then the axiom is not problematic. In other words, for the axiom to
make sense, we need to assume that in the domain of discourse over which the vari-
ables may range we already have something that plays the role of the the Powerset
of x, the axiom do not literarily establishes its existence or legitimate it as a valid
mathematical notion, they only label it as a ‘set’. In this sense, the most appropriate
interpretation of the Powerset axiom would be ‘given a set x, the Powerset of x is a set ’.

In other words, the existential quantifiers in set theoretic sentences act as filters
of sets, namely as a way of selecting sets from other collections that should not be
regarded as sets. This interpretation is supported by Zermelo’s terminology in his
original axiomatisation of set theory:

Set theory is concerned with a ‘domain’ of individuals, which we shall
call simply ‘objects’ and among which are the ‘sets’.16

Since we do not want to make any ontological commitment to the mathematical
notions that are involved in set theory we will avoid the locution ‘object’ and we will
talk of a ‘domain of legitimate mathematical notions’ among which are the ‘sets’. We
shall not discuss the nature of the ‘legitimate mathematical notions’ (i.e. whether
they exist as part of a platonic reality immutable and independent from human think-
ing or they are just useful fictions etc.) as this is irrelevant to the main thesis of the
present work that any axiom system is a definition in disguise. Nor we will propose
suitable criteria for establishing the legitimacy of a given mathematical notion. We
will simply assume that the legitimate mathematical notions are previously available
in the domain of individuals where ‘sets’ are selected. Analogous considerations can be
made for arithmetic where the existential quantifiers would act as ‘filters of numbers’.
Thus, in general, the existential quantifiers in a mathematical sentence filter-out the
legitimate notions who fall into the concept defined through the relevant axiom system.

Based on these considerations, we propose the following non-literal interpretation
of the axioms of ZFC.

16Zermelo 1908 [16] as translated in [15].
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• (Extensionality) Two sets are equal if they contain the same sets as elements.
• (Pairing) Given two sets a and b, the pair {a, b} (i.e. the collection containing

exactly a and b as elements) is a set;
• (Separation) Given a formula ϕ(x, ~p) with sets parameters ~p, and given a set
a, the collection of all x in a that satisfy ϕ(x, ~p) is a set;
• (Union) Given a set a, the union of a (i.e. the collection of all sets that belong

to some element of a) is a set;
• (Power Set) Given a set a, the collection of all subsets of a is a set;
• (Replacement) Given a function f(x) (defined with set parameters) and a set
a, the collection of all f(x) with x ∈ a is a set;
• (Foundation) A collection of sets that does not have an ∈-minimal element is

not a set;
• (Infinity) Consider all the collections of sets that contain the empty set and

are closed by the operation x 7→ x ∪ {x}, at least one of such collections is a
set;
• (Choice) For every family of nonempty sets which is itself a set, the image of

the choice function is a set.

Under this interpretation, the axioms of ZFC are not meant as instructions for con-
structing mathematical objects, but rather as an axiomatic definition of the word ‘set’.
The basic set theoretic operations such as the union, the power set of a set etc. are not
legitimated by the axioms, instead the possibility of those operations is assumed in
advance. The axioms state that the resulting collections can be considered to be ‘sets’.

Formal existence is really a matter of what the axioms, taken as a whole, determine
to be a ‘set’. In fact, when we apply the existential quantifier to a certain collection,
we make the collection available for the other axioms. In this sense, the whole theory
ZF (or ZFC) defines the word ‘set’. Now, we argue that the very nature of the concept
of set should not be sought in the idea of a collection of objects regarded as a totality
in its own right, but rather in the possibility of performing specific operations on such
collections. To support this claim, let us go back to the very origin of the concept of
set, that historians of mathematics date back to Cantor’s ‘derived point-set’.

It is a well determined relation between any point in the line and a given
set P to be either a limit point of it or no such point, and therefore with
the point-set P the set of its limit point is conceptually co-determined;
this I will denote P’ and call the first derived point-set of P. 17

At this point, Cantor applied the operation of derivation to the derived point-set
P ′, obtaining ‘the second derived point-set P ′′ and reiterated the process. What is

17Cantor, as quoted in Ferreirós [3], p.143.
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crucial here is that, before Cantor, there was already talk of sets, collections of points
etc. Therefore, Cantor’s original contribution should not be sought in the concept of
collections intended as totalities in their own right, but rather in the very idea that
such collections were available for certain mathematical operations such as the deriva-
tion. In this spirit, we consider the concept of ‘set’ to be related to the possibility of
applying specific operations to a given collection of objects.

To further illustrate this view, we should consider for instance the Axiom of Choice,
AC. The fact that AC was implicitly used in many mathematical proofs, even before
Zermelo’s explicit formulation, suggests that this was generally accepted as a natural
principle. Thus the Choice function can be regarded as a perfectly legitimate opera-
tion and the debate should not concern the legitimacy of this function, but rather the
idea that the collection of objects derived from such a collection (i.e. the image of the
choice function) can be taken to be a ‘set’, that is whether it can be made available
for the set theoretic operations definable from the other axioms.

We shall, then, reconsider our approach to the thorny problem of the choice of
new axioms for set theory. When discussing the axiom of choice or large cardinals
axioms, we wonder whether or not a choice function exists, inaccessible cardinals
exist and so on. This leaves us under the impression that the foundational goal
of set theory is to detect which mathematical entities do or do not exist, are or
aren’t legitimate mathematical notions. But again it would be näıve to think that set
theory can dictate the terms for an ontology of mathematics. In our perspective, the
discussion over large cardinal axioms should not be phrased in terms of existence or
non-existence of large cardinals, but rather as the problem of whether a certain ‘large’
collection of ordinals can be made available for the operations defined by the axioms
of ZFC (or ZF) without contradiction. In fact, in second-order logic one can define
being ‘(strongly) inaccessible’ as a property of classes then, for instance, the class of
ordinals is inaccessible in this sense (provided this class is accepted as a legitimate
mathematical notion). Thus the legitimacy of large cardinals axioms concerns the
problem of whether or not any inaccessible collection can be taken to be a set, namely
whether one can apply the other set-theoretic operations to such a collection without
contradiction.

6. A multitude of concepts of set

We have outlined our view of the axioms of set theory as definitions in disguise.
In this perspective, a single axiom is not an assertion inherently true or false, but
the whole system of axioms defines the concept of ‘set’. It follows that by adding or
removing one or more axioms, we change the concept defined. So, in particular, the
concept of set defined by the theory ZF is different than the one defined by the theory
ZFC, or ZF+V=L, or ZF + ∃κ(κ is measurable) etc. Now, a definitional view point of
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axioms does not necessarily lead us to embrace a wild formalist view of mathematics
considered to be a meaningless game where random theories are investigated together
with their logical consequences. We cannot rule out, for instance, the possibility of
an inter-subjective or innate concept of set that would make some set theories ‘truer’
than others to the extent that they conform to the intended concept.

Nevertheless, the panorama of theories defended nowadays leaves little hope for a
universal agreement on a unique concept of set. Conflicting intuitions are behind the
most promising enrichments of ZF: on the one hand, we have the idea that sets must
be obtained by a cumulative process, namely at each stage we throw in ‘the basket of
sets’ only those collections that are obtained from the previous stages with operations
that are definable in a somehow ‘canonical’ way — it is the case, for instance, of V=L
or V=Ultimate L—, on the other hand we have more ‘liberal’ axioms, such as Forcing
Axioms, where roughly anything that can be forced by some ‘nice’ forcing notions is
in V, i.e. is a ‘set’.

This pluralism of concepts of sets brings us to support Feferman’s thesis that the
continuum hypothesis is an inherently vague question (see [1]), although our argu-
ments are somewhat different. The very meaning of the continuum changes over the
theories, indeed we may even agree on what is a collection of natural numbers18, but
which of those collections are ‘sets’ depends on the concept of ‘set’ considered. Thus
for instance, in the framework of Forcing Axioms, all the collections of natural num-
bers that can be forced by nice forcing notions are ‘sets’, thus the continuum is quite
large and, not surprisingly, CH fails (the strongest forcing axioms imply that the con-
tinuum is ℵ2). On the contrary, the concept of ‘set’ defined by the theory ZF+V=L is
more restrictive, thus only few collections of natural numbers are sets in this theory,
and in fact CH holds.

Now, if set theory is not a body of absolute truths, but a mere definition of some
concept, it is natural to wonder in what rests its role for mathematics. The answer
may be sought in the richness or abstractness of the concept defined, as all the basic
mathematical notions such as groups, vector spaces, even numbers can be regarded
as sets and can be made available for the set theoretic operations definable from the
axioms of the theory ZF. Thus the goal of set theory does not consist in justifying the
existence of mathematical notions or the truth of mathematical propositions, the aim
of a theory of sets should be to define a notion of ‘set’ as rich as possible to embrace
every useful mathematical notion.

On the basis of the ‘richness’ of the underlying concepts of sets, we may come to
prefer one theory over the others. This line of thought brings us to evoke a fact that

18The continuum is the size of R, or equivalently the size of the powerset of N.
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is often considered to be a natural motivation for large cardinals axioms. As pointed
out by Steel,

The language of set theory as used by the believer in V=L can cer-
tainly be translated into the language of set theory as used by the
believer in measurable cardinals, via the translation ϕ 7→ ϕL. There is
no translation in the other direction.19

In other words, the concept of set carried by V=L can be expressed in the theory
of measurable cardinals, while the converse seems to be prima facie impossible. Thus,
the notions of ‘set’ underlying the theory of large cardinals is more expressive than
V=L.

Nevertheless, Hamkins presented a serious challenge to this argument. He showed
that:

Even if we have very strong large cardinal axioms in our current set-
theoretic universe V, there is a much larger universe V + in which the
former universe V is a countable transitive set and the axiom of con-
structibility holds.20

Thus, even the axiom of constructibility is rich enough to allow us to talk about
the concept of sets underlying large cardinals axioms within a model of V = L.

It follows that the natural outcome of our definitional perspective is pluralism,
which in contemporary set theory is represented by the ‘multiverse conception’ (of
which Hamkins is one of the main supporters [6]). This can be described as the view
that there are many distinct and equally legitimate concepts of sets, as opposed to
the ‘one universe view ’ which in contrast asserts that there is only one absolute set
concept with a corresponding absolute set-theoretic universe where every set-theoretic
question has a definite answer. We should, however, add an important note: some set
theorists endorse the multiverse view as an extreme form of platonism where not just
one, but many universes exist as an independent reality; our view, on the contrary,
does not entail any ontological commitment to the concept defined through the axioms.

7. Conclusion

In conclusion, we have revisited Poincaré and Hilbert’s view of geometry as a defi-
nition in disguise and we have extended this approach to all axiomatic systems. Then,

19Steel [2].
20Hamkins [7].
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we have proposed an interpretation of the axioms of ZFC where the existential quanti-
fiers are intended as filters of sets, namely as ways of singling out sets from collections
that are not worth the title of ‘set’. This naturally leads us to regard set theory as
an axiomatic definition of the concept of set. Furthermore, we have argued that the
very nature of this concept should not be sought in a collection of objects regarded as
a totality in its own right, but rather in the idea that certain collections are available
for specific operations definable from the other axioms. We have observed that the
concept of set so defined changes if one adds or removes one or more axioms from the
theory. This leads to a pluralism of concepts of sets varying with the theories. Finally,
we have claimed that despite pluralism, set theory can still play a fundamental role for
mathematics, and this is to be sought in the ‘richness’ of the concept of set underlying
the theory, which is meant to embraces all suitable mathematical notions.
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